
Introduction to
Drupal 9 migrations
Agaric.coop online webinars

USA | Nicaragua | México | Germany

https://agaric.coop/31-days-drupal-migrations

https://agaric.coop/31-days-drupal-migrations

Upcoming Full-day Trainings

● July 13 - Getting started with
Drupal 9

● July 21 - Drupal 8/9 content
migrations

● July 23 - Upgrading to Drupal
8/9 using the Migrate API

https://agaric.coop/training

https://agaric.coop/training

Extract
Transform
Load

Extract (Source plugin)

Transform (Process plugin)

Load (Destination plugin)

SQL database

nodes

CSV file

Google Sheet

JSON file

XML file

static map

migration_lookup
iterator

default_value

concat

get
users

files

paragraphs

SQL database nodes

CSV file

Google Sheet

JSON file

XML file

migration_lookup

iterator

default_value

concat

get

users

files

images

paragraphs

SOURCE PROCESS DESTINATION

Source

DestinationProcess GLUE

Common modules

composer require \
'drush/drush' \
'drupal/migrate_plus:^5.1' \
'drupal/migrate_tools:^5.0' \
'drupal/migrate_source_csv:^3.4'

Example migration

A two step process

● Write the migration YAML definition files.
● Execute the migrations.

○ From the command line (code and config).
○ From the user interface (config).

Two ways to define migrations
● Code

○ Works out the box with Drupal core.
○ Files are placed on /migrations folder.
○ Rebuild caches to detect changes.
○ Run from the command line.

● Configuration entity
○ Require the Migrate Plus module.
○ Files are placed on /config/install folder.
○ Import (sync) configuration to detect changes.
○ Run from the user interface with Migrate Tools module.

Tips for writing migrations
● Start from an existing migration. Look for an example

online that does something close to what you need
and modify it to your requirements.

● Pay close attention to the syntax of the YAML file. An
extraneous space or wrong indentation level can
break the whole migration.

● Read the documentation to know which source,
process, and destination plugins are available. One
might exist already that does exactly what you need.

Tips for writing migrations
● Make sure to read the documentation for the specific

plugins you are using. Many times a plugin offer
optional configurations.

● Look for contributed modules that might offer more
plugins or upgrade paths from previous versions of
Drupal.

● When writing the migration pipeline, map one field at
a time. Problems are easier to isolate if there is only
one thing that could break at a time.

Tips for writing migrations
● When mapping a field, work on one subfield at a time

if possible. Some field types like images and
addresses offer many subfields.

● There is no need to do every data transformation
using the Migrate API. When there are edge cases,
you can manually update those after the automated
migration is completed.

● Commit to your code repository any and every
change that produces right results.

Tips for writing migrations
● Learn about debugging migrations.
● Seek help from the community. Migrate maintainers

and enthusiasts are very active and responsive in the
#migrate channel of Drupal slack.

● If you feel stuck, take a break and come back to it
later.

Live demo (what can go wrong?)

Field mapping syntax
process:
 destination_field/0/subfield_1:

plugin: plugin_name
config_1: value_1
config_2: value_2

 destination_field/0/subfield_2:
plugin: plugin_name
config_1: value_1
config_2: value_2

 destination_field/1/subfield_1:
plugin: plugin_name
config_1: value_1
config_2: value_2

 destination_field/1/subfield_2:
plugin: plugin_name
config_1: value_1
config_2: value_2

Visit https://agaric.coop/blog/understanding-syntax-drupal-migrations for more information.

https://agaric.coop/blog/understanding-syntax-drupal-migrations

Process pipeline syntax

process:
 destination_field:

- plugin: plugin_name
 source: source_column_name
 config_1: value_1
 config_2: value_2

- plugin: plugin_name
 config_1: value_1
 config_2: value_2

- plugin: plugin_name
 config_1: value_1
 config_2: value_2

Visit https://agaric.coop/blog/understanding-syntax-drupal-migrations for more information.

https://agaric.coop/blog/understanding-syntax-drupal-migrations

Date field

SUBFIELD TYPE EXAMPLE *

value string 2020-03-08

Expected destination format for date only field

SUBFIELD TYPE EXAMPLE *

value string 2020-03-08T07:03:21

Expected destination format for date and time field

* Visit https://agaric.coop/blog/migrating-dates-drupal for format characters.

https://agaric.coop/blog/migrating-dates-drupal

Date field transformation

PATTERN * EXAMPLE

source F j, Y March 8, 2020

destination Y-m-d 2020-03-08

Expected destination format for date only field

PATTERN * EXAMPLE

source F j, Y H:i:s March 8, 2020 07:03:21

destination Y-m-d\TH:i:s 2020-03-08T07:03:21

Expected destination format for date and time field

* Visit https://www.php.net/manual/en/function.date.php for format characters.

https://www.php.net/manual/en/function.date.php

Modules

Migrate Plus
drupal.org/project/migrate_plus

Migrate Tools
drupal.org/project/migrate_tools

Migrate Source CSV
drupal.org/project/migrate_source_csv

https://agaric.coop/blog/list-migration-related-drupal-modules

https://agaric.coop/blog/list-migration-related-drupal-modules

Thanks
● Lucas Hedding (heddn)
● Adam Globus-Hoenich (phenaproxima)
● Vicki Spagnolo (quietone)
● Michael Lutz (mikelutz)
● Markus Sipilä (masipila)
+ All migrate contributors

Upcoming Full-day Trainings

● July 13 - Getting started with
Drupal 9

● July 21 - Drupal 8/9 content
migrations

● July 23 - Upgrading to Drupal
8/9 using the Migrate API

https://agaric.coop/training

https://agaric.coop/training

Please Provide Feedback

https://agaric.coop/r/drupal-migrations-feedback

@dinarcon | #D9MigrateExample | mauricio@agaric.com

https://agaric.coop/r/drupal-migrations-feedback

